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Mesophotic reef-building coral communities (~30-120m depth) remain largely
unexplored, despite representing roughly three-quarters of the overall depth range at
which tropical coral reef ecosystems occur. Although many coral species are restricted
to shallow depths, several species occur across large depth ranges, including lower
mesophotic depths. Yet, it remains unclear how such species can persist under extreme
low-light conditions and how the different symbiotic partners associated with these
corals contribute to facilitate such broad depth ranges. We assessed holobiont genetic
diversity of the Caribbean coral Agaricia undata over depth in three localities of Colombia:
San Andres Island (between 37 and 85m), Cartagena (between 17 and 45m) and
“Parque Nacional Natural Corales de Profundidad” (between 77 and 87 m). We used a
population genomics approach (NextRAD) for the coral host, and amplicon sequencing
for the associated Symbiodinium (non-coding region of the plastid psbA minicircle)
and prokaryotic (V4 region of the 16S rRNA gene) symbiont community. For the
coral host, genetic structuring was only observed across geographic regions, but not
between depths. Bayesian clustering and discriminant analysis of principal components
revealed genetic structuring between the three regions, but not between shallow
(<30m), upper (=30 and <60 m) and lower mesophotic (>60m) depths. This pattern
was confirmed when evaluating pairwise differentiation (Fst) between populations, with
much higher values between regions (0.0467-0.1034) compared to between depths
[within location; —0.0075—-(—0.0007)]. Symbiotic partners, including seven types of
zooxanthellae and 325 prokaryotic OTUs, did not exhibit partitioning across depths.
All samples hosted Symbiodinium clade C3 and the type C3psbA_e was present in all
depths. Alpha microbial diversity was not significantly different between zones (upper vs.
lower), which community composition between coral colonies was similar in the two
zones (ANOSIM, R = —0.079, P > 0.05). The coral microbiome was dominated by
Uncultured Betaproteobacteria in the order EC94 (16%), Unknown-Bacteria (15%), family
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principal components revealed genetic structuring between the
three regions (i.e., Cartagena, San Andrés, and Curacgao), but
not between shallow (<30m), upper (>30 and <60m) and
lower mesophotic (>60m) depths (Figure 2). This pattern was
confirmed when evaluating pairwise differentiation (Fsr; fixation
index) between populations, with much higher values between
regions (0.0467-0.1034) compared to between depths [within
location; —0.0075-(—0.0007)] (Table 3). Sixteen SNPs were
identified as under selection by both LOSITAN (604 outliers)
and BayeScan (16), 15 SNPs showing distinct (near-) fixed
allele frequencies between regions: one for San Andrés, eleven
for Cartagena and three for Curagao. Pairwise differentiation
(Fst) between shallow and upper mesophotic depths was
lower in Cartagena (CTGS-CTGU: —0.0075) than upper

TABLE 2 | observed heterozygosity (Ho), expected heterozygosity (He) and
inbreeding coefficient (Fis) (+standard deviations) for all-inclusive and neutral loci.

SAIU  0.1144 (£0.1436)
SAIL  0.1066 (£0.1372
CUR  0.1348 (+0.2351

0.1990 (£0.1911) 0.3797 (+£0.4289
0.1589 (0.2308) 0.0722 (0.4896

Pop Ho He Fis
All-inclusive loci CTGS 0.1301 (£0.1977) 0.1891 (+0.2208) 0.2280 (+0.4730)
6933 SNPs CTGU 0.1281 (+0.1705) 0.1936 (+0.1972) 0.2712 (+£0.4348)
SAIU  0.1180 (+0.1486) 0.2006 (+0.1876) 0.3370 (+£0.4267)
SAIL  0.1092 (+0.1421) 0.1986 (+0.1902) 0.3640(+0.4320)
CUR  0.1480 (+0.2488) 0.1691 (+0.2340) 0.0699(+0.4960)
“Neutral” loci ~ CTGS 0.1245 (£0.1902) 0.1901 (+ 0.2232) 0.2526 (+0.4728
5516 SNPs CTGU 0.1246 (+£0.1651) 0.1933(+0.1977) 0.2886 (+0.4319,
( )
( )
( )

( )
( )
0.1986 (:0.1880) 0.3479 (4:0.4254)
( )
( )

Pop, Population; CTGS, Cartagena-Shallow; CTGU, Cartagena-Upper; SAIU, San
Andres-Upper; SAIL, San Andres-Lower; CUR, Curagao.

and lower mesophotic depths in San Andrés (SAIU-SAIL:
—0.0007).

Genetic Diversity of Symbiodinium

Amplicon sequencing of the psbA non-coding region of
Symbiodinium algae resulted in a total of 470 pb, which clustered
into 7-9 types depending on the species delimitation method
(Figure 3A). Seven Symbiodinium types were captured in both
methods and deemed as species (sensu Lajeunesse and Thornhill,
2011). All samples hosted clade C3 as previous report for other
Agaricia species (Lajeunesse, 2002). Within each locality no depth
zonation was observed in A. undata colonies. C3psbA_c was the
only type of Symbiodinium that was found in all localities. In
San Andres Island (n = 46) the most common Symbiodinium
type was C3psbA_a across all depths, the type C3psbA_C was

TABLE 3 | Genetic distance (Fgt) values for all-inclusive and neutral loci.

All-inclusive loci Neutral loci
CTGS-CTGU —0.0040 —0.0075
CTGS-SAIU 0.0511 0.0467
CTGS-SAIL 0.0521 0.0428
CTGS-CUR 0.1617 0.1034
CTGU-SAIU 0.0470 0.0445
CTGU-SAIL 0.0471 0.0429
CTGU-CUR 0.1399 0.0929
SAIU-SAIL —0.0004 —0.0007
SAIU-CUR 0.1142 0.0814
SAIL-CUR 0.1174 0.0799

CTGS, Cartagena-Shallow; CTGU, Cartagena-Upper; SAIU, San Andres-Upper; SAIL,
San Andres-Lower.

upper), yellow; SAIL (San Andrés lower), red; and CUR (Curacao), dark blue.

FIGURE 2 | Genetic structure across locations and depths for the coral host Agaricia undata. (A) STRUCTURE diagrams (K = 3) for A. undata inferred from the
all-inclusive loci (top) and “neutral” (bottom) data sets. (B) Principal component analysis (PCA) inferred from the overall data set, where individual samples are
represented by dots and color code corresponding to the locations: CTGS (Cartagena shallow), dark green; CTGU (Cartagena upper), light green; SAIU (San Andrés
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FIGURE 3 | Genetic diversity and distribution of Symbiodinium OTUs in Agaricia undata across depths and locations. (A) Bayesian MCMC phylogenetic tree of
Symbiodinium zooxanthellae OTUs based on non-coding region of the plastid minicircle psbA"°". Colored bars to the right of the phylogeny represent OTUs grouping
based on genetic distance thresholds (3%), bGMYC and bPTP with their corresponding nomenclature. Bootstrap values are based on Bayesian analyses, with only
probabilities over 60% shown (B) Pie charts summarizing diversity and distribution of zooxanthellae OTUs across depth range per locality, which colors correspond to
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also found in both zones and only one colony in the lower
zone have the type C3psbA_b. In Cartagena (n = 31), the most
common type was C3psbA_e present in all depths, followed by
C3psbA_f present also in the two zones and two colonies in
the shallow zone with the types C3psba_C and C3psbA_g. In
PNN “Corales de profundidad” (n = 2) the only two colonies
we found have types C3psbA_C and C3psbA_d (Figure 3B,
Supplementary Table 1).

Genetic Diversity of Associated

Prokaryotes

Amplicon sequencing of the V4 region of the 16S rRNA gene
targeting prokaryotes resulted in a total of 364,598 paired-end
Mlumina reads (250 bp). The prokaryote community richness
of A. undata samples were 325 OTUs (per sample ranged
from 28 to 217 OTUs). Alpha diversity was not significantly
different between zones (upper vs. lower) (t-test p > 0.05;
Table 4; Supplementary Table 2). Additionally, the prokaryote
community composition between coral colonies was similar
in the two zones [Figure 4, ANOSIM, R = —0.079, P > 0.05
(family level) and ANOSIM, R = —0.2114, P > 0.05 (OTU 97%
level)]. The coral microbiome was dominated by Uncultured
Betaproteobacteria in the order EC94 (16%), Unknown-
Bacteria (15%), family Cenarchaeaceae (12%), Burkholderiaceae
(10%), and Hahellaceae (10%). Other families that were also
abundant included Vibrionaceae (4%), Oxalobacteraceae (3%),
and Rhodobacteraceae (3%). The families Burkholderiaceae
and Alcanivoracaceae were only found in the upper zone
while the family Spirochaetaceae, unknown families of the

TABLE 4 | Sample statistics from prokaryote found in samples of Agaricia undata.

Sample Depth(m) No.of OTUs Shannon InvSimpson Chao-1
observed

SAI261 37 95 2.065 0.6407 111.5
SAI265 38 188 0.6407 111.5 229.6
SAI178 40 88 0.962 229.6 260.2
SAI134 45 183 0.7969 260.2 270.8
SAI237 60 154 0.8094 270.8 194.2
SAI239 60 28 0.9662 194.2 49
SAI244 65 217 0.223 49 270.3
SAI251 65 115 0.9125 270.3 117.3
SAI229 65 41 0.9597 117.3 46.6
SAI101 70 96 0.724 46.6 159.6
SAI211 75 141 0.1734 1569.6 197.9
SAI116 80 101 0.5783 197.9 1101

OTUs richness and alpha diversity estimated base on the subsample dataset (5000 reads)
and the presence of a single OTU in a least 3 samples.

class PAUC37f and Gemm-4 was exclusive of the lower
mesophotic zone. Similarity percentage analysis (SIMPER)
revealed that main families responsible for the differentiation
between NMDS groups (Figure4B) were EC94, unknown-
bacteria, Hahellaceae, Cenarchaeaceae, Vibrionaceae, and
Oxalobacteraceae (Figure 4A; Table5). Furthermore, three
groups of colonies of A. undata, and two outlier samples, showed
differences at family level (Figure4B; ANOSIM, R = 0.96,
P < 0.05).
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FIGURE 4 | Bacterial community composition associated to Agaricia undata from San Andres island. (A) Heatmap of the relative abundance of 16S rRNA gene
amplicon sequences taxonomically classified to family level or lower classification ordered in relation with their percentage of contribution to dissimilarities between
groups according to SIMPER analysis. The dendrogram is based on Bray-Curtis dissimilarities. (B) nMDS ordinations based on Bray-Curtis relative abundance
dissimilarities of prokaryotic families shows a partitioning microbiome by groups, but not depth. Higher taxonomic ranks, e.g., k, kingdom; c, class; o, order; were
used when we were unable to assign to family level (f), e.g., unassigned Bacteria.

DISCUSSION

Despite the large bathymetric range of the coral A. undata,
from shallow depths (17m) to the mesophotic zone (87 m),
which extends well beyond the photosynthetic compensatory
point (1% light level, ~77 m; Lesser et al., 2009), we did not
observe genetic differentiation within the sampled depth ranges
(17-45m and 37-87 m) at each of the locations in the coral host,
or the associated Symbiodinium and prokaryote communities.

The ecological success of this species across these depth ranges
does therefore not seem to be the result of genetic adaptation
of the coral host, or due to the hosting of distinct specialized
symbiont communities over depth. Further research should
explore whether this is due to broad acclimatory potential (i.e.,
physiological plasticity) of this species, or whether differences in
low-light environments (i.e., turbid shallower depths or oceanic
lower mesophotic depths) are too minor to warrant further
adaptive or acclimatory specialization.
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TABLE 5 | Families accounting for most of the variation in SIMPER analysis.

Taxon Av. dissim Contrib. % Cumulative % Mean group 1 Mean group 2 Mean group 3
o_EC94 16.73 21.52 21.52 1.69E+03 34 113
k_Bacteria 12.82 16.49 38.02 420 1.46E+4-03 109
f__Hahellaceae 8.604 11.07 49.08 916 82 105
f__Cenarchaeaceae 4.965 6.386 55.47 27 546 53.3
f__Vibrionaceae 3.881 4.992 60.46 373 13.3 95
f__Oxalobacteraceae 3.311 4.259 64.72 313 10 84
f__Rhodobacteraceae 3.001 3.86 68.58 26.3 328 123
f__Rhodospirillaceae 1.864 2.397 70.98 33 174 165
f__Pseudoalteromonadaceae 1.77 2.276 73.26 89 6.33 169
f__Pseudomonadaceae 1.463 1.882 75.14 148 1.33 18
f__Alteromonadaceae 1.442 1.855 76.99 27.5 29 170
p__Proteobacteria 1.163 1.496 78.49 51.3 1.67 93.3
o__Desulfovibrionales 1.136 1.462 79.95 6.5 125 0
o__Kiloniellales 1.091 1.403 81.35 0.75 112 7
f__Piscirickettsiaceae 0.9913 1.275 82.63 11 81.7 91.3
f__Colwelliaceae 0.8318 1.07 83.7 45 31.7 59.3
f__Phyllobacteriaceae 0.8106 1.043 84.74 1.75 81.3 21
f__Xanthomonadaceae 0.805 1.036 85.78 81.8 0.333 1
f__[Amoebophilaceae] 0.7683 0.9883 86.76 1.5 11.3 75.3
f__Flammeovirgaceae 0.6281 0.808 87.57 1 36.7 55.3
f__Burkholderiaceae 0.544 0.6997 88.27 46 0 8.67
c__SAR202 0.5101 0.6561 88.93 3.75 33.3 27

Average abundance and cumulative percentage contribution of the 22 dominant families contributing at least to 90% of the Bray-Curtis dissimilarities (SIMPER). Calculated among
groups. Group 1: SAI261, SAI178, SAI229, and SAI116; Group 2: SAI134, SAI244, and SAI211; Group 3: SAI 265, SAI237, and SAI251. Higher taxonomic ranks, e.g., k, kingdom;
¢, class; o, order; were used when we were unable to assign to family level (f), e.g., unassigned Bacteria.

Host Genetic Structure across Depth and

Locations

Our genome-wide SNPs analysis indicated that A. undata
populations lack a clear pattern of genetic differentiation
across the studied depth ranges of 17-45m (Cartagena
Bay) and 37-85m (San Andres Island). This contrasts to
another assessment of vertical connectivity in Bermuda, where
strong genetic differentiation was observed between shallow
and upper mesophotic depths (12 vs. 40m) for the related
brooding coral species Agaricia fragilis (Bongaerts et al., 2017).
Although other species for which vertical connectivity has been
assessed in Bermuda, Montastraea cavernosa (4-58 m depth)
and Stephanocoenia intersepta (12-40 m depth) (Serrano et al.,
2014; Bongaerts et al., 2017), both broadcasting species, lacked
genetic differentiation over depth. We observed genome-wide
divergence between regions, which confirms expectations of
geographic differentiation due to the distance of ~700km
between the oceanic island and the coast of Colombia. A small
number of outlier loci were observed to be highly divergent
between regions, indicating that local selection may have further
contributed to the observed genome-wide divergence among
localities (perhaps related to inshore vs. offshore environments).

Diversity of Symbiodinium
Although A. undata associated with different Symbiodinium at
the different geographic locations, no partitioning over depth

was observed (Figure 2B). Phylogeographic patterns have been
found in other studies, including a correspondence between
population genetic structure of Symbiodinium and their hosts
(Howells et al., 2009; Thornhill et al., 2009, 2014; Andras et al.,
2013). Since Atlantic brooding corals including agaricids have
very stable symbioses with Symbiodinium (Thornhill et al., 2006),
these differences in zooxanthellae communities may respond
to locally adapted genotypes of Symbiodinium rather than to
limited connectivity among populations. The fact that one type
was found in all locations suggests high dispersal potential of
Symbiodinium in A. undata across the Colombian Caribbean
or ancestral populations. Differences between San Andrés and
Cartagena could be explained by environmental differences,
with high sediment loads from rivers in Cartagena (Grajales
and Sanchez, 2016) decreasing light and temperature levels
at this location with contrasting oceanic conditions at San
Andrés.

The differences in the Symbiodinium associated below 30 m
to several Agaricia species, including A. undata, have been
observed previously (Bongaerts et al., 2013, 2015a,b, 2017; Lucas
et al, 2016). The relatively small depth range assessed for
Cartagena (17-45m) could explain why no differences were
found in our study in that locality. Although, in other studies
with a smaller range, other authors found depth differences,
e.g., Agaricia fragilis (12-40m), Galaxea astreata (10-55m),
Orbicella faveolata (5-25m), O. franksi (10-25m) (Bongaerts
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et al., 2011, 2015a, 2017). It has been proposed that the broad
bathymetric range of Symbiodinium types may be explained by
their ability to photoacclimate or be physiologically distinct (e.g.,
populations of Symbiodinium type C1 adapted to distinct thermal
environments) (Howells et al., 2011). Also, Symbiodinium has the
capacity to change the abundance of photosynthetic pigments
and symbiont cell densities, which can increase over depth
(Fricke et al., 1987). Nonetheless, future studies are needed
to examine if the Symbiodinium types we found in A. undata
have a greater potential for photosynthesis in lower light levels
or if the Symbiodinium types have the capacity to acclimatize,
e.g., Symbidinium cell densities or photoprotective to light-
harvesting pigments ratio, as it has been reported by Ziegler
et al. (2015) in MCEs. Colonies of A. undata hosted only a
single Symbiodinium type C3 (based on the absence of peak for
dubious bases, or multiple peaks in a single position). In the
Brazilian endemic corals Mussismilia spp. three different strains
were detected (A4, B19, and C3), where only one strain (B19)
was found in mesophotic samples and multiple strains were
found in the same M. braziliensis coral colony (Silva-Lima et al.,
2015).

With respect to symbiotic phototrophs related to A. undata,
it is important to mention that a portion of the samples (58%)
had a close association with the endolithic algae Ostreobium
(Gonzalez et al., submitted). It is of further interest to test if the
contribution from this green alga could add in the acclimation
and photophysiology of Symbiodium as it has been observed in
shallower corals (Fine and Loya, 2002).

Diversity of Coral-Associated Prokaryotic

Communities

Microbial community composition was also unvarying in
Bacteria and Archaea across depth zones in A. undata. We
divided the samples in two groups: “upper mesophotic” and
“lower mesophotic” according to the depth at which colonies
were collected. Although we did not observe differences between
these depths, there are differences at family level between
three groups of colonies of A. undata and two outlier samples
(Figure 4B). These groups did not show differences between
depth, temperature (all groups have samples from upper and
lower), reef sampling nor collection date. We hypothesized that
differences in prokaryotic community in these groups could
be explained by the vertical transmission of symbionts as it
has been observed in other brooder corals such as Stylophora
pistillata (Neave et al., 2017) and Mussismilia hispida (Leite
et al., 2017). Our results where similar to previous studies in a
“depth-specialists” species (Agaricia grahamae) were a unvarying
prokaryotic community was associated with this coral with a
narrow depth distribution (55-85m) (Glasl et al., 2017).

There were 325 OTUs present in A. undata microbiome,
though just some were important in contributing to dissimilarity
among groups (Table 5). A single B-proteobacteria OTU from
the order EC94 contributed to 21% to average measure of
dissimilarity among groups of different depths. These OTUs
with unknown function have been found to dominate in shallow
and deep sea sponges (Jackson et al, 2013; Steinert et al,

2016). An unknown group of OTUs (4) classified as Bacteria
that could not be further identified contributed to 16% to
average measure of dissimilarity. The family Hahellaceae had
11% of the contribution. This family involves different functional
characteristics such as nitrate reduction, chemotactic activity and
production of antimicrobial compounds (Lawler et al., 2016) and
includes common coral-associate taxa such as Endozoicomonas
(Bayer et al., 2013; Neave et al,, 2016, 2017). OTUs belonging
to the genera Cenarchaeum and Nitrosopumilus, as well as other
two unidentified genera of the family Cenarchaeaceae, were
also present in A. undata samples (91% in one of the outlier
samples of 70 m). These genera are involved in the metabolic
cycle that transform ammonia to nitrite that can be transferable
to Symbiodinium (Lins-de-Barros et al., 2010). Burkholderia were
only present in colonies collected less than 60 m and prevalent
in one of the samples (88%). Species of this genus can fixed
nitrogen and degrading aromatic compounds and can be part
of the coral core microbiome or be associated with a fungus on
the coral (Bayer et al., 2013; Ainsworth et al., 2015; Leite et al,,
2017).

In conclusion, this study revealed a lack of coral host
differentiation between depths, with a remarkably consistent
associated  symbiont community (Symbiodinium  and
prokaryotes). The mechanism by which this species adjusts to
distinct environments is still unknown, and further physiological
assessments are required to understand this species’ acclimatory
potential across its distribution range.
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