Bollati et al. 2017

scientific article | International Journal of Molecular Sciences | open access Open access small aa108fa7f478951c693af64a05bc4b46e6711dbb69a20809512a129d4d6b870f

FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals

Bollati E, Plimmer D, D’Angelo C, Wiedenmann J

Adobe pdf ff6e8bea21f0598930b59d2452bacbad49a13eb0fa773865059b4c2ed088a358
Www fec836ca290318f37dc3ecd481f22b98faf488d5ddef687807ca6b76d8e893ed
Gscholar 58dd9f05df3b8d1811d087e8507325500777053d6677b471fd75373a30a4cee1

Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments.

Ijms 18 01174
Meta-data (pending validation)
Depth range
0- 0 m

Mesophotic “mentions”
14 x (total of 6961 words)

Physiology Biomedicine

Research focus
Scleractinia (Hard Corals)

Research platforms
Author profiles