Publications

Andradi-Brown et al. 2016


scientific article | PLoS ONE | open access Open access small aa108fa7f478951c693af64a05bc4b46e6711dbb69a20809512a129d4d6b870f

Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean

Andradi-Brown DA, Gress E, Wright G, Exton DA, Rogers AD

Adobe pdf ff6e8bea21f0598930b59d2452bacbad49a13eb0fa773865059b4c2ed088a358
Www fec836ca290318f37dc3ecd481f22b98faf488d5ddef687807ca6b76d8e893ed
Gscholar 58dd9f05df3b8d1811d087e8507325500777053d6677b471fd75373a30a4cee1
Abstract

Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.

10.1371   journal.pone.0156641
Keywords
Meta-data (pending validation)
Depth range
5- 40 m

Mesophotic “mentions”
64 x (total of 6265 words)

Fields
Biodiversity Community structure

Research focus
Fishes

Locations
Honduras - Bay Islands

Research platforms
Diving - Technical Open-Circuit
Author profiles
Dominic Andradi-Brown ( 8 pubs)
Erika Gress ( 5 pubs)