Publications:

Tamir et al. 2019


scientific article | Ecosphere | open access

Light environment drives the shallow‐to‐mesophotic coral community transition

Tamir R, Eyal G, Kramer N, Laverick JH, Loya Y


Abstract

Light quality is a crucial physical factor driving coral distribution along depth gradients. Currently, a 30 m depth limit, based on SCUBA regulations, separates shallow and deep mesophotic coral ecosystems (MCEs). This definition, however, fails to explicitly accommodate environmental variation. Here, we posit a novel definition for a regional or reef-to-reef outlook of MCEs based on the light vs. coral community–structure relationship. A combination of physical and ecological methods enabled us to clarify the ambiguity in relation to the mesophotic definition. To characterize coral community structure with respect to the light environment, we conducted wide-scale spatial studies at five sites along shallow and MCEs of the Gulf of Eilat/Aqaba (0–100 m depth). Surveys were conducted by technical-diving and drop-cameras, in addition to one year of light spectral measurements. We quantify two distinct coral assemblages: shallow (<40 m) and MCEs (40–100 m), exhibiting markedly different relationships with light. The depth ranges and morphology of 47 coral genera were better explained by light than depth, mainly, due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (1% at 76 and 36 m, respectively). Branching coral species were found mainly at shallower depths, that is, down to 36 m. Among the abundant upper-mesophotic specialist corals, Leptoseris glabra, Euphyllia paradivisa, and Alveopora spp. were found strictly between 40 and 80 m depth. The only lower-mesophotic specialist, Leptoseris fragilis, was found deeper than 80 m. We suggest that shallow coral genera are light-limited below a level of 1.25% surface PAR and that the optimal PAR for mesophotic communities is at 7.5%. This study contributes to moving MCE ecology from a descriptive phase into identifying key ecological and physiological processes structuring MCE coral communities. Moreover, it may serve as a model enabling the description of a coral zonation worldwide on the basis of light quality data.

Keywords
Meta-data (pending validation)
Depth range
5- 100 m

Mesophotic “mentions”
67 x (total of 6974 words)

Classification
* Presents original data
* Focused on `mesophotic` depth range
* Focused on `mesophotic coral ecosystem`

Fields
Community structure

Focusgroups
Scleractinia (Hard Corals)

Locations
Israel - Red Sea

Platforms
Drop / Towed Video
SCUBA (open-circuit or unspecified)

Author profiles