Background The highly valuable red coral Corallium rubrum is listed in several Mediterranean Conventions for species protection and management since the 1980s. Yet, the lack of data about its Atlantic distribution has hindered its protection there. This culminated in the recent discovery of poaching activities harvesting tens of kg of coral per day from deep rocky reefs off SW Portugal. Red coral was irregularly exploited in Portugal between the 1200s and 1700s, until the fishery collapsed. Its occurrence has not been reported for the last 300 years. Results Here we provide the first description of an Atlantic red coral assemblage, recently rediscovered dwelling at 60–100 m depth in southern Portugal. We report a very slow growth rate (0.23 mm year-1), comparable to Mediterranean specimens. In comparison with most of the Mediterranean reports, the population reaches much larger sizes, estimated to be over one century old, and has a more complex coral branch architecture that promotes a rich assemblage of associated species, with boreal and Mediterranean affinities. Atlantic red coral is genetically distinct, yet mitochondrial analyses suggest that red corals from the Atlantic may have introgressed the Mediterranean ones after migration via the Algeria current. Our underwater surveys, using advanced mixed-gas diving, retrieved lost fishing gear in all coral sites. Besides illegal harvesting, the use and loss of fishing gears, particularly nets, by local fisheries are likely sources of direct impacts on these benthic assemblages. Conclusions We extended the knowledge on the distribution of C. rubrum in the Atlantic, discovered its genetic distinctiveness, and reveal a rich deep-dwelling fauna associated to these coral assemblages. These findings support a barrier role of the Atlantic-Mediterranean transition zone, but reveal also hints of connectivity along its southern margin. The results highlight the genetic and demographic uniqueness of red coral populations from SW Iberia. However, we also report threats to these vulnerable populations by direct and indirect fishing activities and argue that its protection from any mechanically destructive activities is urgent as a precautionary approach. This study advances our understanding of phylogeographic barriers and range edge genetic diversity, and serves as a baseline against which to monitor future human and environmental disturbances to Atlantic C. rubrum.
Fields
Biodiversity
Disturbances
Ecology
Molecular ecology
Focusgroups
Octocorallia (Soft Corals)
Locations
Portugal
Platforms
Rebreather
Manned Submersible